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ABSTRACT 

A dispersion relation involving all space -time harmonics has 

been obtained for electromagnetic wave propagation in an  infinite 

dielectric r$edium whose permittivity is modulated by a high inten- 

sity pump wave containing two harmonics. 

given for the parametric coupling between the n = -1 (difference 

frequeqcy) and n = t l  (sunn frequency) space-time harmonics of the 

electromagnetic signal wave. 

Brillouin diagrams are 

The effect of the amplitude and phase 

of the secorid harmonic of the pump wave on the parametric growth 

process ha$ been studied. Both stable and temporally unstable inter- 

actions a re  considered. 



Traveling wave parametric interactions of electromagnetic 

waves propagating in a dielectric medium with permittivity varying 

periodicalld in time and space has assumed considerable importance 

because of its numerous practical applications. 

theoretical papers [l]-[4] have appeared on this problem, it is as- 

sumed fo r  the most part that the perturbing pump wave modulating 

the medium is a weak, progressive, sinusoidal disturbance. However, 

Although many 

there a re  a number of physical sitdations in which the modulating pump 

wave can have a large amplitude and contain two or  mope harmonics 

of the fundamental pumping frequency. 

processes in Quantum Electronics [ 51, optical diffraction by non- 

linear ultrasonic waves [6] or  electromagnetic diffraction by large 

amplitude traveling wave disturbances in the ionosphere or  in labora- 

tory plasmas [7) a re  all various manifestations of this phenomena. 

The purpose of this report is to  study the effect of the amplitude and 

phase of the second harmonic component of the pump wave on the para- 

metric interactions resulting from electromagnetic wave propagation 

in dielectric media of this type. 

Stimulated B rillouin scattering 

It is assumed that the pump wave traveling along the z direction 

in an infinite, dielectric medium contains two harmonics and causes 

the dielectric constant of the medium to vary in the following manner 

E(Z, t) = eo t el cos(wvt - kvz) t e2 cos(2w V t - 2k V z t 4) 

where c2 << c1 << eo. w and k a re  the angular frequency and wave 

number of the fundamental component of the pump wave and 16 is the 

phase angle of the second harmonic relative to the fundamental. 

V V 

The 
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pump wave at frequency 2wv can eithe e second harmonic of a 

high-intensity, non-linear pump wave in which case the phase angle 
i 4 = 0,  or am, independent wave generated by a separate source in 

which case he phase angle can be retar ad by various values. For i 
report only the phase angles 6 = 0 and jd = a r e  

Ea k< El EO . 
This assm&tion  is true only if the w a h  has a weak second hax- 

monic compbnent; in most of the physical situations described earlier 
I 

the second barmonic p u p  component is indeed small and Equation 2 

is applicablq [51-[7]. 

Let us assume a type electromagnetic wave moving in the 

The wave equation for the 1 I 
z direction nd parallel to the pump wave. 

electric fie1 B E(z,t) in the medium can be written as: 
I 

e I meability ab the medium ia the di eplac ement 

where €f2ip t) is given by ( I ) .  By using FPo 

with the principle of superposition, it can 

field can be represented in the following d 

eorem ir, conjunction 

hewn that the electric 

“ j ( W l t  -kr”, 
E(e,t) = Eoe Ane 

n=-w 

where wg and k a re  the angular frequency and wave number of the signal I! 
wave in the unmodulate medium. The phase angle = 0 will be considered 

first and the dispersion relation for the =! rC case will  be obtained by 
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making the necessary change in the sign of the second harmonic 

modulating coefficient e2 later in this report. By substituting (4) 

D = n 

in (3) we obtain the following fourth-order, linear, homogeneous 

difference-differential equation; when the phase angle jd = 0: 

2 

2 
2 a  (k f 

1 - c o  
(Wn f NJv) 

where n = 0, f l ,  f2,. . . and 

b d 

co = 1 is the velocity of the 

lated medium. Eq. (5) represehts 

electromagnetic wave in the unmodu- 

ah infinite set of linear difference 

equations in the modal amplitudes An. 

can be obtained in the form of rapidly converging continued fractions. 

By adding the (ndl)th and (nt1)th equations given by (5) and sub- 

It will  now be shown that solutions 

stituting the resulting expression for [Ane2 + Anf2] in (5) we obtain: 

= o  (7) 

From Eq. (2) it is seen that (ez/eo) << 1 and ( E ~ / E ~ )  << 1. Hence, the 

coefficients 

products of 

of the other 

of the last two terms in (7) which involve the quadratic 

( E ~ / E ~ )  and (e2/el) a re  much smaller than the coefficients 

terms in (7). Therefore, the last two terms in (7) can be 
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neglected and we obtain a linear, second-order difference-differential 

equation with rational coefficients : 

(8  1 

The electric field amplitudes can be expressed now in the form of con- 

tinued fractions as followe : 

( 9 )  n A 

n- 1 
-= A 

f o r n a  1 

and 

Equations 9 and 10 apply to the case where 4 /= 0. 

amplitudes when the phase angle # = 1T can be’obtained by replacing e2 

in the equations 5 to 10 by -e2. 

The electric field 

A dispersion relation for the nth space-time harmonic in the form 

of continued fractions, for the two cases wheh 4 = 0 and # = 7~ is given by 
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The :e2 in the above equation indicate$ whether the second harmonic 

of the pump wave is in phase ( 4  = 0) or  out of phase (4 = 7 r )  with the 

fundamental component of the pump wave, respectively. The conver- 

gence of the continued fractions in ( 9 ) ,  (10) and ( 1 1 )  will  now be proved. 

From (8) and ( 6 )  it is seen that the following limit exists: 

where V = wv/kv = the phase velocity of the pump wave. 

In the asymptotic limit n+oo the coefficients of the difference- 

differential equation (8) a r e  constants. 

can be now shown that equation (8) is a Poincarg difference equation [3 ,8]  

whose characteristic equation is given by: 

Hence, by Laplace's method, it 

t l = O  
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R By applying Poincare's theorem [3,8] it can be shown that the finite limits 

I 
€2 . D-- 
€0 

el "2 > 2 - -  -D . 
2Eo €1 

When (E /E )I <C 1, the above condition indicates the existence of finite 

limits except1 in the sonic region given by 
11 

I 

2 k  = V /et. The existence of a solation for (8) automatically 

assures the onvergence of the continued fractions in (9) ,  (10) and (11). 4 
If the second harmonic modulating coefficient c2 is set equal to zeru 

then eqs. and (14) reduce to the form given by Hessel and 

Oliner [93. In particular, when tz2 = 0, (15) reduces to the form 

B v B  1 

Jy-5 
€0 

This conditio'n is identical to the limits of the sonic region defined by 

Cassedy and 'Oliner [ 11 for wave propagation in a sinusoidally modulated 

dielectric mddiurn. 

Outsidd the sonic region defined in Equation 15, the parametric 

interactions can be divided into two types as follows: Type 1. When 

the phase velocity of the pump wave is less than the phase velocity of 

i 

the signal wave (a ,  = V/co -C l ) ,  then the parametric interactions a re  of 
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the stable, non-inverting modulator type with the dispersion diagram 

showing stop bands in the phase synchronous region. 

Brillouin scattering and optical diffraction by ultrasound co 

this category4 Figs. la and b show the Brillouin diagram ( 

for the coupling between n = -1 (difference frequency) and n = tl (sum 

frequency) space-time harmonics. Stokes and Antistokes interactions 

of this type ake of interest in non-linea? optics and in ultrasonics which 

was one of thk main reasons fu r  considering them in this report. 

parameters chosen in the calculations were E /E = 0.5, v = V/co = 0 . 2 5 ,  

and e2/e1 = d, 0.1, and - 0 . 1 ,  

7094 using a bap'idly iterative secant technique for solving the trans- 

cendental eqqation, 

Stimulated 

The 

P O  
The solutions were obtained with an IBM 

It can be seen from Fig. 1 that the stop band region 

I expands and $ontracts depending on the amplitude and phase of the second 

harmunic p&p modulating coefficient e2. In the absence of the second 

pump harmoriic the stop band region in terms of kOXv extends from 

1.9741~ to 2. d981T. 

fundamental component of the pump wave (4 = 1~) and I eZ/e1 1 = $0.1, 

the width of the stop band increases and extends from 1.9531~ to 2.123n. 

When the second harmonic is in phase with the fundamental (4 = 0) and 

I e2/e1 I = 0 . 1 ,  the stop band width decreases to 1.993li' to 2.0771~. 

I 

When the second harmonic is out of phase with the 

Within the stop band, the solutions to the dispersion relation re- 

quire compldx propagat ion constant s indicating contra flow directional 
I 

coupling resulting in frequency down conversion when the signal and 

pump waves a re  traveling in the same direction. 

of el, e2, and 4 the real  part  of the propagation constant p, is constant 

For each set of values 

ry component a varies in a L ut the stop band while the im 
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PLh - 
FIG. la .  COUPLING BETWEEN n = - 1  AND n = t 1  HARMONICS; T ~0.25 ; 2 =0.5 

CONSTANT ; T = 0.25 ; 8 = 0.5 



semicircular manner. The complex propagation constant within the 

stop band is also significantly affected by the second harmonic pump 

wave. When e2 = 0, the maximum value of the normalized complex pro- 

pagation constant within the stop band is given by 0. 531n t j0.067X; 

with the second harmonic out of phase (6 = n) and 1 e2/e1 I = to. 1, 

the maximum value of the propagation constant in the stop band increases 

to 0 . 5 3 9 ~  1. j0.093X and reduces to 0.5237c t jO.044n for the in-phase 

condition (4 = 0, I eZ/e1 1 = $0.1). From these computations it appears 

that the parametric coupling between the n = t1 and n = -1 space-time 

harmonics o( the signal wave is stronger when the second harmonic of 

the pump wa e is driven out of phase with the fundamental and decreases 

when it is in,phase 1 with the fundamental component of the pump wave. 

Type 21 When the phase velocity of the pump wave is larger than 

the phase ve ocity of the signal wave in the unperturbed medium ( v  > 1), 

the parametdic interactions a re  characterized by 'temporal instabilities 
tl 
I 

resulting in Qime growing oscillations. The nature of this oscillatory 

growth procdss has been well  described by Cassedy [2], The stop bands 

in the Brillo in diagram a re  inverted, wherein solutions for the disper- 

sion relatio a re  obtained only for complex frequencies and real wave 

numbers. i e amplitude and phase of the second harmonic once again I 

P 

has a strongiinfluence on both the width of the stop band in temporal 

frequency (k = w/c) and on the growth rate of the oscillations; however, 

the effect of the phase relation of the second harmonic on the parametric 

growth rate is opposite to that observed in the Type 1 interaction where 

v < 1, 

between the n = -1  and n = t 1  harmonics. 

* 

Figs. 2a and b show the Brillouin diagram for the interaction 

When e2 = 0, the inverted stop 
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FIG. 20. COUPLING BETWEEN n =-I AND n = t 1 HARMONICS; r 52.5; % = (x5. 

- BLAV 

FIG. 2b. COUPLING BETWEEN n = - I  AND n = + I  HARMONICS; r-2.5 ; 
4 . 0 . 5  
€0 



band extends from PLhv = 4 . 6 1 0 ~  to 4.720T.  

and k z / ~ l I  = 0.1, the stop band expands in width and covers the range 

pLhv = 4.62% to 4. 785n. 

temporal frequency within the stop band is constant but the growth rate 

When 4 = 0 (in phase) 

For fixed values of el, e2, and jd, the 

(imaginary part of k X ) varies in an approximately semicircular manner. 

The effect of the second harmonic pump wave on the growth rate is shown 

in Fig. 2b; when e2 = 0, the maximum value of the complex kOhv in the 

stop band is 2.250W t jO.042n. 

condition), the maximum value of kOXv is 2.232T t j0. 09T. 

rate .of the instability, therefore, increases with the amplitude of the 

second harmonic when it is in phase with the fundamental component of 

the pump wave. 

o v  

When 1 e2/e1 1 = to. 1 and jd = 0 (in phase 

The growth 
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